A bit of history. England's great 20 Km walker, Ken Matthews, seen here during a track 10 Km in May 1961. Matthews dominated the 20 in the early '60s and won the '64 Olympics in 1:29:34. His 1:40 margin over second place is the best in Olympic 20 Km history. Note the shoes.
Some results

Some results

Some results

Some results

From Heel To Toe

Very interesting. In putting together the Looking Back feature for this issue, I looked back to Chris McCarthy's newsletter that preceded the ORW to see if January 1962 carried some material that I could use for 40 years ago. I decided not to include 40 years ago, but was surprised at what I found. It seems that Chris McCarthy started the Midwest Walker in February 1961. He was the editor of American Race Walker, which had been established in 1959. In November 1961, he changed the title to American Race Walker, and the newsletter continued until January 1962, when he merged it with the ORW.

In January 1962, McCarthy published the first issue of the United States Race Walker, which he continued to publish until 1968. McCarthy's newsletter was the only one published in the United States during this time period. He also published the American Race Walker, which was later renamed the American Walker. McCarthy was the editor of both publications.

In May 1962, McCarthy published an article in the American Race Walker about the 1962 Olympic Games in Los Angeles. He mentioned that he had run in the 10,000 meter race and had finished in 3rd place. He then went on to talk about his training for the 1964 Olympic Games in Tokyo.

In the February issue of the American Race Walker, McCarthy talked about his training for the 1964 Olympic Games. He mentioned that he had run in the 5,000 meter race and had finished in 4th place. He then went on to talk about his training for the 1968 Olympic Games in Mexico City.

In the March issue of the American Race Walker, McCarthy talked about his training for the 1968 Olympic Games. He mentioned that he had run in the 10,000 meter race and had finished in 3rd place. He then went on to talk about his training for the 1972 Olympic Games in Munich.

In the April issue of the American Race Walker, McCarthy talked about his training for the 1972 Olympic Games. He mentioned that he had run in the 5,000 meter race and had finished in 4th place. He then went on to talk about his training for the 1976 Olympic Games in Montreal.

In the May issue of the American Race Walker, McCarthy talked about his training for the 1976 Olympic Games. He mentioned that he had run in the 10,000 meter race and had finished in 3rd place. He then went on to talk about his training for the 1980 Olympic Games in Moscow.

In the June issue of the American Race Walker, McCarthy talked about his training for the 1980 Olympic Games. He mentioned that he had run in the 5,000 meter race and had finished in 4th place. He then went on to talk about his training for the 1984 Olympic Games in Los Angeles.

In the July issue of the American Race Walker, McCarthy talked about his training for the 1984 Olympic Games. He mentioned that he had run in the 10,000 meter race and had finished in 3rd place. He then went on to talk about his training for the 1988 Olympic Games in Seoul.

In the August issue of the American Race Walker, McCarthy talked about his training for the 1988 Olympic Games. He mentioned that he had run in the 5,000 meter race and had finished in 4th place. He then went on to talk about his training for the 1992 Olympic Games in Barcelona.

In the September issue of the American Race Walker, McCarthy talked about his training for the 1992 Olympic Games. He mentioned that he had run in the 10,000 meter race and had finished in 3rd place. He then went on to talk about his training for the 1996 Olympic Games in Atlanta.

In the October issue of the American Race Walker, McCarthy talked about his training for the 1996 Olympic Games. He mentioned that he had run in the 5,000 meter race and had finished in 4th place. He then went on to talk about his training for the 2000 Olympic Games in Sydney.

In the November issue of the American Race Walker, McCarthy talked about his training for the 2000 Olympic Games. He mentioned that he had run in the 10,000 meter race and had finished in 3rd place. He then went on to talk about his training for the 2004 Olympic Games in Athens.

In the December issue of the American Race Walker, McCarthy talked about his training for the 2004 Olympic Games. He mentioned that he had run in the 5,000 meter race and had finished in 4th place. He then went on to talk about his training for the 2008 Olympic Games in Beijing.

In the January 2002 issue of the American Race Walker, McCarthy announced that he would be retiring as the editor of the newsletter. He mentioned that he had been the editor for 40 years and had published over 500 issues. He then went on to talk about his plans for the future.

In the February issue of the American Race Walker, McCarthy talked about his retirement. He mentioned that he would be continuing to write articles for the newsletter and would be working on a new book. He then went on to talk about his plans for the future.
Olympics and the 50 at the 1932 Games, died on April 12, 2001. He was 97 and the oldest living U.S. Track & Field Olympian. I'm not sure who he passed that torch to. Harry had held that honor at least since 1999, when Martin Rudow wrote a great article about him in the Northwest Runner. We repeated that article in the March 1999 ORW. Hinkel won 18 U.S. titles between 1925 and 1936, 10 of them at 3 miles/5Km, the others at 1 mile (indoors), 3 km, and 7 miles. **Dogs and us**. Long-time subscriber Don Jacobs, now in the state of Washington, sent me the following excerpt from a book entitled "Dogs". "Technically, what the horse does is part-walk and part-run at some point in the stride. In contrast, the double-flight gait of the greyhound is a true run. In a human walking race, one foot must always be on the ground, which means that for some brief instant, both feet must be on the ground. There must be no flight, no leaping forward in a walking race. **(Ed. As judged by the human eye, of course.)** Walking and running are different gaits and are based on different principles of physics. Walking is a falling motion, with gravity providing the acceleration. **(Ed. Apparently no longer true among today's elite athletes.)** The individual leaves forward and starts to fall down, and then moves a leg forward to stop the falling. This leg raises the body back up to the original height. In a true walk, the leg doesn't provide any acceleration forward. The speed of a walk depends on the acceleration of the body by gravity (32 ft. per second squared) and the length of the stride. How far the animal or human falls forward on each stride is a large part of the speed it develops. Running is leaping forward into the air and falling back down. It is like a coiled spring, loaded and then released, propelling the animal forward. The first part of the leap is the fastest as the body accelerates forward, but while it is in the air, it begins to slow because of friction with the air. The animal comes back to earth when its velocity is less than the pull of gravity. An animal that is really fast doesn't spend very much time floating around in the air, but keeps the leg levers pulling and pushing against the earth, constantly overcoming gravity and catapulting the body forward. The greyhound goes leap, leap, leap, leap along the track, while a horse goes leap, walk, leap, walk, leap, walk, ... The rhythm is audible, mimicked by the onomatopoeic gal-umph, gal-umph, gal-umph. If you put a leap-leap dog like a greyhound or even a leap-walk dog in harness, the instant that all four feet are off the ground, the back strap of the harness will not stop the flight, but pull the dog backward and off balance and it will fall sideways toward the central gang line. The dog will become unstable. Just imaging having a team of 12 unstable dogs all stumbling and falling at high speed." **(Ed. So would a harness help constrain a leap-walk racewalker.)**

The walker as an artist. Coach, author, organizer, promoter, athlete. Howie "Jake" Jacobson has worn all of these titles for many years. But, perhaps unknown to most of the racewalking crowd, Jake also likes to retire to the studio, don the beets, pick up brush and palette, and exercise his artistic talents. He has been an artist for most of his adult life, and, about a year ago, began specialized in commissioned works—original oil paintings of runners and racewalkers done from photographs. Interested in a portrait of yourself, your friend, your sweetie? Visit www.jakesart.com if you want to learn more about Jake's other projects, his contact information, and prices for his services. **World Class Racewalking Clinics**. From all I have heard, Dave McGovern's clinics live up the their name. If you are interested in participating in one of these informative and rewarding experiences, here is Dave's upcoming schedule: Feb. 22-24, Scottsdale, Arizona. Contact Heidi Hauch, 480-391-3347; March 8-11, Houston, Texas, contact Juanita Rogilio, 713-729-5753; April 19-21, Dallas, Texas, contact Tida Chambers, 214-559-0383; May 10-12, North Conway, H.H., contact Barb and John Renda, 603-447-8933; July 5-7, Franklin, Ill., contact Jaceque Picha, 815-469-8158; and July 12-14, Anchorage Alaska, contact Ruth Carter, 907-333-3756. The clinic fee is $125. **Walking in Canada**. Roger Burrows has compiled a booklet titled *Stats and Chats: The Best of Canadian Race Walking*. According to Roger, the "Stats" are lists of all Canadian Racewalking Champions, records, and all-time bests, plus Canadian participation in all the major international Games, Championships, and Cups. The "Chats" are narrations or recollections, reminding us all of some of those occasions, some spectacular, almost always in some way memorable. The book, which will be about 100 pages, laser-printed, and spiral bound, should be available by the end of February. Cost will be $18 Canadian. (I'm not sure what that is in US dollars now; around 12, I guess. But if you are interested you can contact Roger at 34 Oakhaven Private, Ottawa, ON K1K 4K1, Canada.) **RWI 2002 Goals**. Racewalking International has announced its goals for 2002: 1. Managing the U.S. Army's World Class Athletics Program contract to provide coaching for military racewalkers at California's Olympic Training Center. RWI has submitted a proposal to Coach Enrique Pena to assist Al Neppner and John Nunn to materially advance their racewalking performances this year. (Ed. This is interesting in that RWI had stopped funding Pena last summer, leaving his future at the Training Center in doubt. At last report, he is funded for the first 3 months of the year and the North American Racewalking Institute and Training Center athletes are seeking funds to keep them there beyond that time. Certainly, RWI funds will help, if Pena wants to accept them in light of past events.) 2. Working with clubs and associations to build on last year's experiences in conducting clinics and seminars for young people through the masters ranks throughout the U.S. 3. Structuring a "RWI Racing Team". This team will be small in number as the entrance "exams" will be tough. But for those with talent and a burning desire to succeed at the highest levels, we will help make that possible with the best coaching available, plus the opportunity to train and compete with the world's best. 4. Publishing positive, insightful articles pertaining to racewalking events, people, and places around the world. 5. And, once again, offering a "High Altitude" training camp. The camp, which opened last spring, is now available for both elite and near-elite national and international walkers in California's Sierra-Nevada range. RWI Chairman is John MacLachlan. Advisory Board members are Frank Alongi, Mike DeWitt, Andrew Hershman, Elliott Deman, Ray Kuhles, and Paul Smith. Kuhles, incidentally, has left his post at the Olympic Training Center to return to UW-Parkside as an assistant to Head Track and Cross Country Coach, Mike DeWitt. Besides serving on the RWI Advisory Board, DeWitt has accepted a post as RWI's Coaching Coordinator. The agreement includes a grant of $10,000 for 2002 to UW-Parkside and Parkside Athletic Club walkers. The funds are for travel expenses for members of the Parkside Racewalking program for events not covered by the Parkside athletic budget. National level members of the Parkside Athletic Club will share in these funds to help defray some travel costs. No part of the funds will go to Coach DeWitt. In return for the funding, DeWitt will allow RWI to use his coaching resources, for example, by providing information to coaches and athletes through RWI's website and by inviting coaches and athletes around the U.S. to question and view his methods and philosophies in person or through RWI in various ways...

Running vs. Racewalking Mechanics

(The discussion above about the gaits of horses, dogs, and humans perhaps begs a more technical discussion from those immersed in the biomechanics of racewalking. Two such individuals are Ian Whately and Wayne Armbrust, both with educational and experiential backgrounds that qualify them as learned commentators on the subject. I hope they won't object if I resurrect an internet discussion from last June. It was spurred by a posting from Bill Penner.)

Ian Whately wrote:

The ever resourceful Mr. Penner posted:

"Researchers at Harvard College measured a wide variety of runners whose top running speeds varied from 6.2 meters/sec to 11/1 1 meter/sec. What did they find? The faster speeds are achieved with greater ground forces, not faster leg movements. Comparing the fastest runner against a slower runner, there is virtually no difference between them in how fast each one repositions the legs for the next step."
This is something to think about. You can't rule out the possibility that the same principle would apply to our non-running, fast ambulatory discipline.

Note that the velocities listed for the study are middle distance or shorter running speeds. If the leg repositioning happens at the same rate in the tested sprinters, but some are moving forward faster, it follows that faster sprinters must have a greater flight phase length. The equation is:

\[V = S - L \times R \]

Your forward velocity (for example, speed in meters per minute) is what you get by multiplying stride length by stride rate. A runner taking 200 strides per minute of 2 meters in length will go 400 meters per minute. If runners "reposition" their legs at the same speed, a runner moving at 450 meters per minute would be taking 200 strides per minute but have a stride length of 2.25 meters.

This fits with the researchers observed change in ground reaction force. That showed that to fly further through the air, you have to push off harder. What does this mean for racewalkers? It helps to clearly show that racewalking is not sprint running. We are limited in stride length by the contact rule. You just can't take legal strides much over 1.2 meters unless you have extraordinarily long lower limbs. Most of us will stride at about 0.9 to 1.1 meters per step. In order to go faster without breaking the rules, we need to change the other half of our equation—stride rate. To racewalk faster, you need to increase the number of steps you take in a minute. To run faster, you generally use a longer stride. (Ed. My personal experience is that to go faster, I increase both sides of the equation, and this true even in my pre-decript days. Conversely, when I slow, due to fatigue, or whatever, both stride length and stride rate decrease. And, I always thought that was the case with anyone. Of course, that is a comment from someone who competed seriously in the pre-keep-your-stride-behind-you days.) (Ed. again. Since tying that yesterday, I did 6 100 meter sprints—this will reveal how feeble my efforts are these days, most wouldn't call these sprints. I timed each and counted strides on each. And, I increased the effort on each, although the times don't fully reflect that, since 1.3 and 5 were into a fairly stiff breeze, and 2.4 and 6 with the wind. So, looking at those wind-aided three, I did 35.20, 35.90, and 35.15. The number of strides were 91.5, 90, and 89, respectively. Thus, as my speed increased, the stride length went from 1.093 to 1.11, to 1.123; and the stride rate from 156.0, to 159.24, to 161.8. Obviously, the times aren't completely accurate when holding a watch in my hand and the number of strides are measured just to the nearest half-stride. But, complete accuracy for those factors wouldn't change the progression of the data. I am certain that had I done the same experiment 40 years ago, the results would have been similar, although the times would have been around 12 seconds faster. I counted my strides at times in those days and know that I increased speed by increasing both sides of the equation. And, really feel most walkers would show similar results, up to whatever the individual's maximum stride length might be.)

Wayne commented:

While I generally agree with what Ian has said, there are a few additional considerations that deserve mention along this line.

Certainly Ian is basically correct when he says that the rules of racing mandate that to increase speed a walker must increase stride frequency. However, it is important that the walker use as long a stride as possible, as close to the upper limit of 1.2 to 1.25 meters as possible. I think most of us understand that the majority of the stride should be to the rear. A long anterior stride produces a braking force, which in turn reduces stride frequency and increases fatigue. Perhaps more importantly, the braking action contributes to both bent knees and lifting.

It is well known from biomechanical studies that the force of a muscular contraction is inversely proportional to the speed of the muscular contraction. Poor runners and walkers cannot exert sufficient force at the high speeds of muscular contraction involved to produce an optimal posterior stride. Have you ever seen poor runners who look like they are picking their feet up and putting them down in the same place? Poor walkers do much the same; they cannot produce an adequate stride to the rear. These facts hit home to me about 2 years ago. Since then, I have been having Gayle (Johnson) do myometrics, sprinting, and high speed dragging of a light weight (both running and walking) with the hope that this would increase her ability to exert force at high rates of contraction. Since beginning this training her stride length increased from about 0.90 meters to about 0.96, all to the rear. I believe this special training has contributed to the outstanding results she has produced the last 2 year (but perhaps also the stress fracture she had earlier this year.) It must also be recognized that at the elite level there is a flight phase lasting perhaps 0.200 seconds that cannot be detected by the eye of the judge. All elite walkers take advantage of this fact; no one could be competitive otherwise. It is obvious that increasing the ability of muscle to develop force at high rates of contraction will make it easier to walk with the low, short flight phase utilized by all elite walkers.

Ian, in turn, commented:

I agree with Jack and Wayne (Ed. A third party. Jack Tregurtha had entered the discussion, but I didn't preserve his comments.) and would like to add the following to each of their comments:

Muscular force is inversely proportional to the speed of the muscular contraction. This means that as you take more rapid strides, your ability to push off hard will decrease. This makes sense if you picture a person trying to lift a very heavy weight. They are able to slowly raise it upwards by pushing very hard, but they cannot lift it rapidly. As you add too much required force (as by carrying heavy weights) you will slow down the speed of movement. If you plan to add strength work to make your walking muscles more able to drive along hard even with a high stride rate, you need to know that strength is specific. "Specific" sounds great, but what does it mean in plain English?

To get stronger for an activity, you need to train with movements that are similar to the movements used in the event you are training for... bench press aids pectoral strength but doesn't help your calf muscles. Another part of this specificity is rate of contraction and range of contraction. You will get the most training benefit if the speed of the muscle contraction is close to the target speed of contraction in the final activity (in this case, racewalking in races). You also need to make sure that the muscle is worked throughout at the range of motion of the target activity—doing hamstring curls so that the lower leg works from 90 degrees to the thigh up until the point where the heel hits your butt will not be very useful preparation for racewalking. Wayne suggests photometrics and light weight dragging—both of which can be adjusted to mimic racewalking action very effectively.

Jack Tregurtha added:

"...my left leg was the same length as my right leg and so I thought that my two legs must form a triangle with two equal sides. This simple reasoning resulted in the conclusion that the stride length in front would have to be precisely the same length as the stride length in front. Thinking a bit more, I realized that my legs were not restricted to the length of my actual leg—there was a foot dangling around at the bottom. On the front leg, the foot was at about right angles to the leg, and did not contribute much extra length. On the rear leg, however, the foot could stretch out to lengthen the length of the leg. This distorted the triangle, and resulted in a longer stride length than the front.

The action of the hips also increases the length of stride behind the walker. At the point of heel strike, the hip-thigh joint of that side should be vertically above that foot while the pelvis as a whole is rotated backwards and downwards towards the push-off foot.

When you put your foot down, the leg is straight and should be close to vertical. Your hips will be positioned so that the hip-thigh bone joint of your front foot is higher than that joint
of the push-off side. This position is produced by rotating the hips during the stride. As you roll forward from the heel strike, you should twist the pelvis so that the hip joint of that leg pushes backwards and downwards (this also draws it slightly towards the midline of the body) until the point at which that foot comes off the floor and starts to swing back into position for the next foot strike.

This pelvis (hip bone) rotation produces a backwards and slightly downwards movement of the hip-thigh joint on the supporting leg and thus increases the stride length behind the body by keeping the toes in contact with the ground. The only other sport that uses this movement repetitively is classic style cross country skiing.

How can you train this hip motion? Sit on a soft surface, such as an idyllic grass field close to a babbling brook with birds gently lolling along is summer light through the clear blue sky.

For the second leg, bend the other leg at the knee with the foot resting lightly on the ground to stabilize you. Keep the body to move forward, but not upwards by using your arm muscles to resist this push off. Keep the body vertical and the rear leg straight through the whole pushing motion. Relax the calf muscles.

A variation of this is that is closer to true walking form: Stand about 3 feet in front of and facing a door frame (open the door for this or you’ll get a flat nose!). Place your hand on the door posts and about belly button level. Extend one leg backward with the foot Oat on the ground and the other leg at the knee at the foot resting lightly on the ground to stabilize you. Keep the upper body vertical. Push forward with the straight rear leg by using the calf muscles. Allow your body to move forward, but not upwards by using your arm muscles to resist this push off. Keep the upper body vertical and the rear leg straight through the whole pushing motion. Relax the calf muscles and let your heel go back to the ground. Repeat several times.

Wayne also followed up on this discussion with the following:

1. Focus on pushing all the way off the trail foot during all training, whatever the speed.
2. Work the calf muscles through a full range against resistance. Keeping the supporting leg straight, stand on one foot with the toes resting on a step or curb. Push right up as far as you can with a rapid calf contraction. Drop back to your start position (control the drop, don’t go down at full speed if it could strain or at least make the calf muscles sore). Repeat several times. You can add weights to the shoulders or hold them in your hands to add more resistance.

A variation of this that is closer to true walking form: Stand about 3 feet in front of and facing a door frame (open the door for this or you’ll get a flat nose!). Place your hand on the door posts and about belly button level. Extend one leg backward with the foot flat on the ground and bend the other leg at the knee at the foot resting lightly on the ground to stabilize you. Keep the upper body vertical. Push forward with the straight rear leg by using the calf muscles. Allow your body to move forward, but not upwards by using your arm muscles to resist this push off. Keep the upper body vertical and the rear leg straight through the whole pushing motion. Relax the calf muscles and let your heel go back to the ground. Repeat several times.

2. Work the calf muscles through a full range against resistance. Keeping the supporting leg straight, stand on one foot with the toes resting on a step or curb. Push right up as far as you can with a rapid calf contraction. Drop back to your start position (control the drop, don’t go down at full speed if it could strain or at least make the calf muscles sore). Repeat several times. You can add weights to the shoulders or hold them in your hands to add more resistance.

3. Wayne also followed up on this discussion with the following:

The Heart of the Matter--Training With Heart Monitors

by Owen Anderson, PhD

(On can be contacted at 240 Dongmning Drive, Greenville, SC 29615, whateleyo@hotmail.com)

Heart-rate training allows you to train precisely and effectively. Numerous articles, books, and promotional materials tell runners that measuring heart rate is an excellent way to gauge the value of their workouts. And it makes sense. After all, running is largely a cardiovascular activity, and the heart rate provides a window to heart function.

No wonder increasing numbers of runners are buying heart-rate monitors (also called pulse-rate monitors) and using them to guide their workout intensities. Other runners take their pulse manually before, during, and after workouts or interval repeats to note the degree of effort of their training.

More and more heart-rate research is also beginning to appear in the scientific journals. Particularly, most research results were based on percentage of maximal oxygen uptake, or max VO2, a measure that can only be made in sophisticated laboratories. Armed with practical information derived from these new reports, you can now use heart-rate information to help you become a faster runner. In fact, one recent study shows that a particular type of heart-rate workout can simultaneously improve your max VO2, your lactate threshold, and your 5 km race time in just 5 to 6 weeks.

The research at California State University, Northridge, followed a group of experienced runners who trained four times per week for five weeks (20 sessions in all) at a fixed intensity of 85 to 90 percent of their maximal heart rate (MHR). This is the same intensity often recommended as the best way to raise lactate threshold--largely regarded as one of the keys to distance running success.

The workouts were simple. Example: The runners warmed up for about 10 minutes and then ran for 35 minutes at 85 to 90 percent of MHR. During the fourth and fifth weeks, the runners added an extra twist to their workouts: they ran at greater than 95 percent of MHR for 60 to 75 seconds in the middle of each workout and for 75 to 90 seconds at the very end.

After just five weeks, the runners showed dramatic improvements. Their 1-mile race times dropped by an average of 18 seconds (from 6:18 to 6:00) and their 5 km times by nearly 2 minutes (from 23:18 to 21:36). (Ed: These may have been experienced runners as reported, they obviously hadn’t been very serious runners with those times.)

Don’t rely on the familiar formula “220 minus your age” to determine your maximal heart rate. For at least one-third of all runners, the formula will over- or under-estimate this number by as much as 15 beats per minute. If you’re a nonsmoker over the age of 45, with a fairly high resting heart rate (above 70 beats per minute) and a relatively low body weight, your chances of having a maximal heart rate 10 to 15 beats above the predicted value are high. For a more accurate estimate of your maximal heart rate, warm up easily for 10 minutes and then run 2 x 800 meters very hard.
Past Racewalk Winners at U.S. Indoor T&F Championships

With the indoor championships coming up in March, here is a review of past winners. The event has varied in length. Women next month.

<table>
<thead>
<tr>
<th>Year</th>
<th>Men</th>
<th>1 Mile</th>
<th>3000 meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1919</td>
<td>Edward Renz</td>
<td>7:33.4</td>
<td>14:33.0</td>
</tr>
<tr>
<td>1918</td>
<td>Richard F. Remer</td>
<td>14:21.8</td>
<td>30:21.0</td>
</tr>
<tr>
<td>1917</td>
<td>Edward F. Remer</td>
<td>13:59.2</td>
<td>29:50.0</td>
</tr>
<tr>
<td>1916</td>
<td>G.H. Goulding (Can.)</td>
<td>13:37.0</td>
<td>28:30.0</td>
</tr>
<tr>
<td>1915</td>
<td>Edward Renz</td>
<td>14:05.6</td>
<td>27:50.0</td>
</tr>
<tr>
<td>1914</td>
<td>R.F. Reamer</td>
<td>14:21.8</td>
<td>27:50.0</td>
</tr>
<tr>
<td>1913</td>
<td>R.B. Gifford</td>
<td>14:32.6</td>
<td>27:50.0</td>
</tr>
<tr>
<td>1912</td>
<td>Sam Liebgold</td>
<td>17:13.6</td>
<td>30:30.0</td>
</tr>
<tr>
<td>1909</td>
<td>Harry Hinkel</td>
<td>17:13.6</td>
<td>25:30.0</td>
</tr>
<tr>
<td>1907</td>
<td>Albert Dooley</td>
<td>18:55.6</td>
<td>31:30.0</td>
</tr>
<tr>
<td>1905</td>
<td>Sam Liebgold</td>
<td>20:35.6</td>
<td>33:30.0</td>
</tr>
<tr>
<td>1904</td>
<td>Albert Dooley</td>
<td>20:35.6</td>
<td>33:30.0</td>
</tr>
<tr>
<td>1903</td>
<td>Sam Liebgold</td>
<td>22:55.6</td>
<td>35:30.0</td>
</tr>
<tr>
<td>1902</td>
<td>Albert Dooley</td>
<td>22:55.6</td>
<td>35:30.0</td>
</tr>
<tr>
<td>1901</td>
<td>Sam Liebgold</td>
<td>24:10</td>
<td>36:30.0</td>
</tr>
<tr>
<td>1900</td>
<td>Albert Dooley</td>
<td>24:10</td>
<td>36:30.0</td>
</tr>
<tr>
<td>1899</td>
<td>Sam Liebgold</td>
<td>25:25</td>
<td>37:30.0</td>
</tr>
<tr>
<td>1898</td>
<td>Albert Dooley</td>
<td>25:25</td>
<td>37:30.0</td>
</tr>
<tr>
<td>1897</td>
<td>Sam Liebgold</td>
<td>26:40</td>
<td>38:30.0</td>
</tr>
<tr>
<td>1896</td>
<td>Albert Dooley</td>
<td>26:40</td>
<td>38:30.0</td>
</tr>
</tbody>
</table>

Looking Back

35 Years Ago (From the January 1967 ORW) - The Athens AC (San Francisco) won a National Postal 20 km walk with a total time of 5:03:43 for the 3-man team. The Ohio Track Club was nearly 9 minutes back. Taking individual honors was OTC's Jack Blackburn with 1:38:12.

30 Years Ago (From the January 1972 ORW) - Fast early-season mile--Ron Daniel had the third fastest mile in history (to that time) with a 6:12.8 in Philadelphia. Ron Kulik, Todd Scully, and Dave Romansky followed in 6:17, 6:21.7, and 6:28. Ten days earlier, Kulik had beaten Daniel 6:28.8 to 6:29. On the other coast, Tom Dooley did 6:30.5 to beat Esteban Valle (6:38) and Larry Walker beat Don DeNoon 6:41.4 to 6:44. Bill Ranney was a close third in both races.

San Rafael high school student Jerry Lansing won the National Junior 35 Km title in 3:18:21.

On the local scene, the editor celebrated his 37th birthday (yes, as I type this I can say that I made it 67 yesterday) by covering 6 miles 176 yards in 4:36, but failed by 66 seconds to make up a 171/2 minute handicap on Doc Blackburn. (The odd distance was because we did exactly 4 laps of a natural loop, which was carefully measured--the scene, as a matter of fact of the 1969 Nat'l 15 Km.) In the Rockies, Jerry Brown showed fine form with a 13:55 for 2 miles and Bill Weigle covered a marathon in 3:33:53. Ron Laird was wintering in England and did a track 20 km in 1:33:35 as well as a couple of 7 milers in 50:50 (finishing first) and 50:53 (second).
25 Years Ago (From the January 1977 ORW)--In the final 1976 races, Larry Walker won the National 1 Hour covering 7 miles 1373 yards and Rudy Haluza won the Master's 15 Km in 1:15:21. Rudy was third in the 1 Hour, just 14 yards back of Ed Bouldin's 7 miles 1030 yards. Susan Liers turned in two fast miles—7:22.5 and 7:27.9. Jim Heiring won a mile in 6:25.6 ahead of Chris Hansen (6:32.4) and also had a 2 mile win in 13:36. Larry Walker was faster, with a 6:16.8 in L.A.

20 Years Ago (From the January 1982 ORW)—Heiring was simply tearing around indoor tracks across the country. He had a 5:55.1 for the mile in Milwaukee, a world best 5:27.1 for 1500 meters in New York City, a 12:40 for 2 miles in Chicago, and a 12:20.6 for 2 miles in Kansas City. Todd Scully was just 5 seconds back in the 1500.

15 Years Ago (From the January 1987 ORW)—American records fell at the Hoosier Invitational indoor meet in Indianapolis as Maryanne Torrellas did 13:29.82 for 3 km and Paul Wick 20:29.67 for 5 km. Teresa Vail was just 3 seconds behind Maryanne with Lyn Weik third. Gary Morgan trailed Wick by 6 seconds and Doug Fournier also went under 21 minutes. Torrellas also had a 6:59.9 to win a mile in Hanover, N.H., with Weik second in 7:01. At West Point, N.Y., Paul Schwartzburg did a mile in 6:06.8 ahead of Mike Tauch's 6:17.65. The following week, Stauch edged Doug Fournier 6:13.52 to 6:13.61. Marco Evoniuk captured the Hawaii Marathon racewalk division in 3:33:35.

10 Years Ago (From the January 1991 ORW)—Walking at the Spectator Indoor Games in Hamilton, Ontario, Debby Lawrence set a world indoor best for 3000 meters with her 5:54.31. She was 7 seconds under the old mark set by Maryanne Torrellas. Victoria Herazo missed the old mark by less than 2 seconds, finishing second, just ahead of Canada's Janice McCaffrey. Torrellas was sixth in the race. A week later, Lawrence did 5:56.29 in Toronto. In Oakland, Cal., Jonathan Matthews did 20 Km in 1:33:29, beating Richard Quinn by 42 seconds.

U.S. Junior Top 10 at 10 Km, 2001
(Compiled by Steve Vaitones)

Men
44:16.8 Pen Shoney, Maine H.S.
45:18.03 Matt Boyles, Rio Grande U.
48:02 Adam Staier, Maine H.S.
48:59.25 Daniel Pendergast, U. of South Maine
52:28.25 Eric Smith, Ohio H.S.
52:41.3 Jonathan Chasse, Maine H.S.
52:46.27 Christopher Diaz, S. Texas WC
55:25.21 Jeff Sprague, Maine H.S.
55:50 Joseph Trapani,N.Y. H.S.
56:57.90 Tim Nichol, U. of Wisconsin-Parkside

Women
53:19.50 Robyn Stevens, Cal. H.S.
56:23.83 Christina Fina, Niagara Walkers
56:32.87 Anne Favolise, Maine H.S.
58:02.86 Amanda Bergeron, Maine H.S.
58:31.15 Nicole Olsen, U.W. Parkside
59:05.55 Elizabeth Paxton, Cal. H.S.
59:13.0 Mallory Delaney, N.Y. H.S.
59:54.58 Shannon Gillespie, N.J. H.S.
61:05.00 Keelin Yenney, Ill. H.S.
61:57.06 Hilary Easter, Maine. H.S.

Two greats and a potential great. Finishing one-two-three in the 1961 National 15 Km in Atlantic City were, left to right, Ron Zinn, Ron Laird, and Rimas Vacaitis. Zinn won 15 national titles from 1961 to 1964 and was sixth in the 1964 Olympic 20 Km. A West Point graduate, he died in Vietnam several months later. Laird was a four-time Olympian (1960, 1964, 1968 and 1976) and winner of 65 national racewalk titles from 1958 to 1976. The youthful Vacaitis showed great promise, but retired within a year to pursue his engineering degree and has not looked back.